Source: Eureka Alert; Neural Regeneration Research // Image Credit: Richard McMurtrey, Institute of Neural Regeneration & Tissue Engineering

(SALT LAKE CITY, Utah) — It is well known that neurological diseases and injuries pose some of the greatest challenges in modern medicine, with few if any options for effectively treating such diagnoses, but recent work suggests a unique approach for reconstructing damaged neural tissue. In an article published in the journal Neural Regeneration Research, several new designs for 3D tissue constructs are described for using stem cells grown on nanofiber scaffolding within a supportive hydrogel.

“The idea that neural structure can be guided in three dimensional hydrogels using nanofiber scaffolding and biochemical cues is quite unique,” said Dr. Richard McMurtrey, the author of the work. “Evidence from in vitro work thus far has been fairly surprising, showing that after only a few days neurons can grow long neurite extensions that track along the coated nanofibers.”

The tissue constructs have been designed for guidance of neural connections, acting like a road map for the growth of the neurons. “One of the weaknesses with prior studies of stem cell implantation into the nervous system is that no guidance is given for what the cells should do once they are implanted,” says McMurtrey. “But if we combine signaling molecules and three-dimensional topographical guidance along with the stem cells, the chances of the cells achieving their intended function is much greater.” Dr. McMurtrey likens the transplantation of cells into the harsh environment of the nervous system to dropping people off in the mountains with no resources and hoping that they form a functional civilization. “What we hope to do, however, is build some of the roads, bridges, street signs, and homes that can guide and protect the cells when they are transplanted. In this case, that infrastructure includes nanofibers, biochemical cues, and hydrogel composites.”

Full Story

Research Report